
Semaine 1

Initiation à l’algorithmique et programmation

Revekka Kyriakoglou

Tours de Hanoi

Les tours de Hanoï sont un jeu de réflexion consistant à déplacer des disques de
diamètres différents d’une tour de « départ » à une tour d’« arrivée » en passant
par une tour « intermédiaire », et ceci en un minimum de coups, tout en
respectant les règles suivantes :

1 on ne peut déplacer plus d’un disque à la fois ;
2 on ne peut placer un disque que sur un autre disque plus grand que lui ou

sur un emplacement vide.
On suppose que cette dernière règle est également respectée dans la
configuration de départ.

1 / 26

Tours de Hanoi

Ce problème peut être résolu par récursivité ! ! !

2 / 26

Tours de Hanoi

Une technique de résolution de problèmes dans laquelle les
problèmes sont résolus en les réduisant à des problèmes plus
petits de même forme.

Récursivité

3 / 26

La récursivité dans la vie réelle

Combien d’élèves au total sont assis directement derrière vous
dans votre "colonne" de la classe ?

Règles :

1 Vous ne pouvez voir que les personnes qui se trouvent
directement devant et derrière vous. Vous ne pouvez donc
pas regarder derrière vous et compter.

2 Vous avez le droit de poser des questions aux personnes qui
se trouvent devant / derrière vous.

Comment pouvons-nous résoudre ce problème de manière
récursive?

4 / 26

La récursivité dans la vie réelle

Solution :

1 La première personne regarde derrière elle pour voir s’il y a
une personne. Si ce n’est pas le cas, la personne répond "0".

2 S’il y a une personne, elle répète l’étape 1 et attend une
réponse.

3 Lorsqu’une personne reçoit une réponse, elle ajoute "1" pour
la personne derrière elle, et elle répond à la personne qui lui a
posé la question.

5 / 26

La récursivité dans la vie réelle

def numStudentsBehind(student_curr):
if (noOneBehind(student_curr)):

return 0
else:

student_behind = getBehind(student_curr)
return numStudentsBehind(student_behind) + 1

La partie if est le cas de base !

La partie récursive est l’appel de la fonction elle-même !

6 / 26

La récursivité dans la vie réelle

def numStudentsBehind(student_curr):
if (noOneBehind(student_curr)):

return 0
else:

student_behind = getBehind(student_curr)
return numStudentsBehind(student_behind) + 1

La partie if est le cas de base !

La partie récursive est l’appel de la fonction elle-même !

6 / 26

Récursivité

Cas de Base : C’est la condition sous laquelle la récursivité
s’arrête. Le cas de base empêche la fonction de s’appeler
indéfiniment, évitant ainsi une boucle infinie ou une erreur de
dépassement de pile. Il gère généralement le problème le
plus simple, le plus petit à résoudre directement.

Cas Récursif : C’est la partie de la fonction où elle s’appelle
elle-même avec un sous-ensemble du problème original ou
un pas de plus vers le cas de base. Le cas récursif réduit le
problème global en instances plus petites, se rapprochant
progressivement du cas de base jusqu’à ce qu’il soit atteint.

Pour assurer qu’une fonction récursive se termine, il est crucial
que chaque appel récursif progresse vers l’atteinte du cas de base.

7 / 26

Récursivité

Cas de Base : C’est la condition sous laquelle la récursivité
s’arrête. Le cas de base empêche la fonction de s’appeler
indéfiniment, évitant ainsi une boucle infinie ou une erreur de
dépassement de pile. Il gère généralement le problème le
plus simple, le plus petit à résoudre directement.

Cas Récursif : C’est la partie de la fonction où elle s’appelle
elle-même avec un sous-ensemble du problème original ou
un pas de plus vers le cas de base. Le cas récursif réduit le
problème global en instances plus petites, se rapprochant
progressivement du cas de base jusqu’à ce qu’il soit atteint.

Pour assurer qu’une fonction récursive se termine, il est crucial
que chaque appel récursif progresse vers l’atteinte du cas de base.

7 / 26

Qu’est-ce qu’un nombre factoriel ?

Un nombre factoriel, noté avec un point d’exclamation (!),
représente le produit de tous les nombres entiers positifs jusqu’à
ce nombre. Le factoriel d’un nombre n, noté n!, est donc défini
comme :

n! “ n ˆ pn ´ 1q ˆ pn ´ 2q ˆ . . .ˆ 3 ˆ 2 ˆ 1

Exemple

Le factoriel de 5 est calculé comme suit :

5! “ 5 ˆ 4 ˆ 3 ˆ 2 ˆ 1 “ 120

Cas spéciaux

Le factoriel de 0 (0!) est défini comme étant égal à 1.

Les factoriels ne sont définis que pour les nombres entiers
non négatifs.

8 / 26

Qu’est-ce qu’un nombre factoriel ?

Un nombre factoriel, noté avec un point d’exclamation (!),
représente le produit de tous les nombres entiers positifs jusqu’à
ce nombre. Le factoriel d’un nombre n, noté n!, est donc défini
comme :

n! “ n ˆ pn ´ 1q ˆ pn ´ 2q ˆ . . .ˆ 3 ˆ 2 ˆ 1

Exemple

Le factoriel de 5 est calculé comme suit :

5! “ 5 ˆ 4 ˆ 3 ˆ 2 ˆ 1 “ 120

Cas spéciaux

Le factoriel de 0 (0!) est défini comme étant égal à 1.

Les factoriels ne sont définis que pour les nombres entiers
non négatifs.

8 / 26

Qu’est-ce qu’un nombre factoriel ?

Un nombre factoriel, noté avec un point d’exclamation (!),
représente le produit de tous les nombres entiers positifs jusqu’à
ce nombre. Le factoriel d’un nombre n, noté n!, est donc défini
comme :

n! “ n ˆ pn ´ 1q ˆ pn ´ 2q ˆ . . .ˆ 3 ˆ 2 ˆ 1

Exemple

Le factoriel de 5 est calculé comme suit :

5! “ 5 ˆ 4 ˆ 3 ˆ 2 ˆ 1 “ 120

Cas spéciaux

Le factoriel de 0 (0!) est défini comme étant égal à 1.

Les factoriels ne sont définis que pour les nombres entiers
non négatifs.

8 / 26

Calcul du Factoriel : Approche Itérative

Définition du Factoriel
Le factoriel d’un nombre entier non négatif n, noté n!, est le produit
de tous les entiers positifs jusqu’à n. Mathématiquement, cela est
exprimé comme :

n! “ n ˆ pn ´ 1q ˆ pn ´ 2q ˆ . . .ˆ 3 ˆ 2 ˆ 1

Créer une fonction factorial_iterative(n) qui calcule le
factoriel d’un nombre entier n.

def factorial_iterative(n):
result = 1
for i in range(2, n + 1):

result *= i
return result

9 / 26

Calcul du Factoriel : Approche Itérative

Définition du Factoriel
Le factoriel d’un nombre entier non négatif n, noté n!, est le produit
de tous les entiers positifs jusqu’à n. Mathématiquement, cela est
exprimé comme :

n! “ n ˆ pn ´ 1q ˆ pn ´ 2q ˆ . . .ˆ 3 ˆ 2 ˆ 1

Créer une fonction factorial_iterative(n) qui calcule le
factoriel d’un nombre entier n.

def factorial_iterative(n):
result = 1
for i in range(2, n + 1):

result *= i
return result

9 / 26

Calcul du Factoriel avec la Récursivité

Définition du Factoriel
Le factoriel d’un nombre entier non négatif n, noté n!, est le produit
de tous les entiers positifs jusqu’à n. Mathématiquement, cela est
exprimé comme :

n! “ n ˆ pn ´ 1q ˆ pn ´ 2q ˆ . . .ˆ 3 ˆ 2 ˆ 1

Cas de Base
Pour n “ 0, le factoriel est défini comme 0! “ 1.

Cas Récursif

Pour n ą 0, le factoriel peut être calculé comme n! “ n ˆ pn ´ 1q!,
où pn ´ 1q! est le factoriel de n ´ 1, calculé de manière récursive.

10 / 26

Calcul du Factoriel avec la Récursivité

Créer une fonction factorial_recursive(n) qui calcule le
factoriel d’un nombre entier n.

def factorial(n):
Cas de base : si n est 1, retourner 1
if n == 1:

return 1
else:

Cas r cursif : n! = n * (n-1)!
return n * factorial(n - 1)

11 / 26

Calcul du Factoriel avec la Récursivité

Créer une fonction factorial_recursive(n) qui calcule le
factoriel d’un nombre entier n.

def factorial(n):
Cas de base : si n est 1, retourner 1
if n == 1:

return 1
else:

Cas r cursif : n! = n * (n-1)!
return n * factorial(n - 1)

11 / 26

Calcul de la Puissance d’un Entier : Approche Iterative

Définition de la Puissance d’un Nombre
La puissance d’un nombre x élevé à n, notée xn, est le produit de
x multiplié par lui-même n fois. Pour n “ 0, x0 “ 1 (si x , 0).

Ecrire une fonction récursive power(x,n) qui prend un nombre
x et un exposant n et renvoie le résultat de xn.

12 / 26

Calcul de la Puissance d’un Entier : Approche Récursive

Définition de la Puissance d’un Nombre
La puissance d’un nombre x élevé à n, notée xn, est le produit de
x multiplié par lui-même n fois. Pour n “ 0, x0 “ 1 (si x , 0).

Ecrire une fonction récursive power(x,n) qui prend un nombre
x et un exposant n et renvoie le résultat de xn.

Cas de Base

Pour n “ 0, x0 “ 1. C’est le cas de base qui arrête la récursivité.

Cas Récursif

Pour n ą 0, la puissance peut être calculée comme xn “ x ˆ xn´1,
où xn´1 est calculé de manière récursive.

13 / 26

Calcul de la Puissance d’un Entier : Approche Récursive

Définition de la Puissance d’un Nombre
La puissance d’un nombre x élevé à n, notée xn, est le produit de
x multiplié par lui-même n fois. Pour n “ 0, x0 “ 1 (si x , 0).

Ecrire une fonction récursive power(x,n) qui prend un nombre
x et un exposant n et renvoie le résultat de xn.

Cas de Base

Pour n “ 0, x0 “ 1. C’est le cas de base qui arrête la récursivité.

Cas Récursif

Pour n ą 0, la puissance peut être calculée comme xn “ x ˆ xn´1,
où xn´1 est calculé de manière récursive.

13 / 26

Calcul de la Puissance d’un Entier : Approche Récursive

Définition de la Puissance d’un Nombre
La puissance d’un nombre x élevé à n, notée xn, est le produit de
x multiplié par lui-même n fois. Pour n “ 0, x0 “ 1 (si x , 0).

Ecrire une fonction récursive power(x,n) qui prend un nombre
x et un exposant n et renvoie le résultat de xn.

Cas de Base

Pour n “ 0, x0 “ 1. C’est le cas de base qui arrête la récursivité.

Cas Récursif

Pour n ą 0, la puissance peut être calculée comme xn “ x ˆ xn´1,
où xn´1 est calculé de manière récursive.

13 / 26

Calcul de la Puissance d’un Entier : Approche Récursive

def power(x, n):
if n == 0:

return 1
else:

return x * power(x, n - 1)

Optimisation

Pour réduire le nombre d’appels récursifs, on peut utiliser la
méthode de "diviser pour régner" en traitant séparément les cas
où n est pair ou impair.

14 / 26

Calcul de la Puissance d’un Entier : Approche Récursive

def power(x, n):
if n == 0:

return 1
else:

return x * power(x, n - 1)

Optimisation

Pour réduire le nombre d’appels récursifs, on peut utiliser la
méthode de "diviser pour régner" en traitant séparément les cas
où n est pair ou impair.

14 / 26

Optimisation du Calcul Récursif de la Puissance

Méthode de "Diviser pour Régner"

Cette méthode réduit le nombre d’appels récursifs en traitant
différemment les cas où l’exposant est pair ou impair. Elle permet
de calculer xn en utilisant moins d’opérations que l’approche
linéaire.

Cas Pair et Impair

Si n est pair, alors xn “ pxn{2q2.

Si n est impair, alors xn “ x ˆ pxpn´1q{2q2.

Cela permet de réduire de moitié le nombre d’opérations
nécessaires à chaque étape récursive.

15 / 26

Optimisation du Calcul Récursif de la Puissance

def power_optimized(x, n):
if n == 0:

return 1
elif n % 2 == 0:

return power_optimized(x, n // 2) ** 2
else:

return x * power_optimized(x, (n - 1) // 2) ** 2

Avantages

Cette optimisation réduit considérablement le temps d’exécution, surtout pour les
grands nombres, en diminuant le nombre total d’appels récursifs.

16 / 26

Optimisation du Calcul Récursif de la Puissance

def power_optimized(x, n):
if n == 0:

return 1
elif n % 2 == 0:

return power_optimized(x, n // 2) ** 2
else:

return x * power_optimized(x, (n - 1) // 2) ** 2

Avantages

Cette optimisation réduit considérablement le temps d’exécution, surtout pour les
grands nombres, en diminuant le nombre total d’appels récursifs.

16 / 26

Qu’est-ce qu’un Palindrome?

Definition
Un palindrome est un mot, une phrase, un nombre ou toute autre
séquence de caractères qui se lit de la même manière de l’avant
vers l’arrière et de l’arrière vers l’avant, en ignorant les espaces, la
ponctuation et les majuscules.

Example
Des exemples de palindromes incluent "radar", "kayak", et
"Madam, in Eden, I’m Adam".

17 / 26

La Fonction isPalindrome

Signature de la Fonction

La fonction ‘isPalindrome‘ accepte une chaîne de caractères et
retourne vrai (‘true‘) si la chaîne se lit de la même manière dans
les deux sens.

Approche Récurisive

Pour vérifier si une chaîne est un palindrome, nous comparons le
premier et le dernier caractère, puis appliquons la même logique
récursivement sur la sous-chaîne restante, en excluant les deux
caractères.

Créer une fonction récursive isPalindrome(s), avec
paramétre qui prend en paramètre une chaîne de caractères s.

18 / 26

Implémentation de isPalindrome

def isPalindrome_1(s):
base case
if (len(s) < 2):

return True
recursive case
elif (s[0] != s[len(s) - 1]):

return False
new_string = s[1,len(s)-2]
return isPalindrome_1(new_string)

}
}

19 / 26

Implémentation de isPalindrome

def isPalindrome_2(s):
Base case:
empty string or single character string
if len(s) <= 1:

return True
s = s.lower()
Check if the first and last characters are the same
and recurse on the substring excluding these characters
return s[0] == s[-1] and isPalindrome_2(s[1:-1])

Explication

Cette fonction élimine les caractères non alphanumériques et les différences de
casse avant de vérifier la propriété de palindrome, ce qui la rend robuste pour
des chaînes complexes.

20 / 26

Les trois principes de la recirculation

1 Votre code doit comporter un cas pour toutes les entrées
valides.

2 Vous devez avoir un cas de base qui ne fait aucun appels
récursifs.

3 Lorsque vous faites un appel récursif, il doit s’agir d’un appel à
une instance plus simple.

21 / 26

Les Tours de Hanoï : Introduction au Problème

Un puzzle mathématique où l’objectif est de déplacer une pile de
disques de différentes tailles d’une tige à une autre, en suivant
trois règles simples :

1 Un seul disque peut être déplacé à la fois.

2 Chaque déplacement consiste à prendre le disque supérieur
d’une des piles et à le placer sur le dessus d’une autre pile.

3 Aucun disque ne peut être placé sur un disque plus petit.

22 / 26

Les Tours de Hanoï

Nous devons trouver un cas très simple que nous pouvons
résoudre directement pour que la récursion fonctionne.

Si la tour est de taille 1, nous pouvons simplement déplacer
ce disque unique de la source à la destination.

Si la tour a plus d’une taille, nous devons utiliser l’auxiliaire.

23 / 26

Les Tours de Hanoï

Nous devons trouver un cas très simple que nous pouvons
résoudre directement pour que la récursion fonctionne.

Si la tour est de taille 1, nous pouvons simplement déplacer
ce disque unique de la source à la destination.

Si la tour a plus d’une taille, nous devons utiliser l’auxiliaire.

23 / 26

Les Tours de Hanoï

Nous devons trouver un cas très simple que nous pouvons
résoudre directement pour que la récursion fonctionne.

Si la tour est de taille 1, nous pouvons simplement déplacer
ce disque unique de la source à la destination.

Si la tour a plus d’une taille, nous devons utiliser l’auxiliaire.

23 / 26

Référence du PDF Inclus

Source : web.stanford.edu,
Récupéré de : https://web.stanford.edu/class/archive/cs/cs106b/
cs106b.1178/lectures/7-IntroToRecursion/7-IntroToRecursion.pdf

24 / 26

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1178/lectures/7-IntroToRecursion/7-IntroToRecursion.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1178/lectures/7-IntroToRecursion/7-IntroToRecursion.pdf

Back to Towers of Hanoi

Back to Towers of Hanoi

Back to Towers of Hanoi

Back to Towers of Hanoi

Back to Towers of Hanoi

Repeat th
ese

ste
ps a

t e
ach

sta
ge!

Solution Récurisve

Approche Récurisve

La solution au problème des Tours de Hanoï peut être abordée
récursivement, en décomposant le problème en sous-problèmes
plus petits.

Idée Clé
Pour déplacer n disques de la tige A à la tige C en utilisant la tige
B comme auxiliaire :

1 Déplacez n ´ 1 disques de A vers B, en utilisant C comme
auxiliaire.

2 Déplacez le disque restant de A vers C.

3 Déplacez les n ´ 1 disques de B vers C, en utilisant A comme
auxiliaire.

25 / 26

Fonction Récurisve pour les Tours de Hanoï

def ToH(n, A, B, C):
if n == 1:

print("Disk␣1␣from", A, "to", B)
return

ToH(n - 1, A, C, B)
print("Disk", n, "from", A, "to", B)
ToH(n - 1, C, B, A)

ToH(3, "A", "B", "C")

26 / 26

	Récursivité

