Initiation a 'algorithmique et programmation

Revekka Kyriakoglou

rs de Hanoi

Les tours de Hanoi sont un jeu de réflexion consistant a déplacer des disques de
diametres différents d’'une tour de « départ » a une tour d’« arrivée » en passant
par une tour « intermédiaire », et ceci en un minimum de coups, tout en
respectant les régles suivantes :

on ne peut déplacer plus d’un disque a la fois ;

on ne peut placer un disque que sur un autre disque plus grand que lui ou

sur un emplacement vide.

On suppose que cette derniéere régle est également respectée dans la

configuration de départ.
1/26

Tours de Hanoi

Ce probléme peut étre résolu par récursivité ! !!

2/26

Tours de Hanoi

- , o ae

Recursnwte
Une technique de résolution de problémes dans laquelle les
problémes sont résolus en les réduisant a des problemes plus

petits de méme forme.

3/26

La récursivité dans la vie réelle

< Combien d’éléves au total sont assis directement derriére vous
dans votre "colonne" de la classe ?

Régles :

Vous ne pouvez voir que les personnes qui se trouvent
directement devant et derriére vous. Vous ne pouvez donc
pas regarder derriére vous et compter.

Vous avez le droit de poser des questions aux personnes qui
se trouvent devant / derriére vous.

Comment pouvons-nous résoudre ce probleme de maniere
récursive ?

4/26

La récursivité dans la vie réelle

Solution :

La premiére personne regarde derriére elle pour voir s’il y a
une personne. Si ce n'est pas le cas, la personne répond "0".

S’il y a une personne, elle répéte I'étape 1 et attend une
réponse.

Lorsqu’une personne recgoit une réponse, elle ajoute "1" pour
la personne derriére elle, et elle répond a la personne qui lui a
posé la question.

5/26

La récursivité dans la vie réelle

def numStudentsBehind(student_curr):
if (noOneBehind(student_curr)):
return 0
else:
student_behind = getBehind(student_curr)
return numStudentsBehind(student_behind) + 1

6/26

La récursivité dans la vie réelle

def numStudentsBehind(student_curr):
if (noOneBehind(student_curr)):
return 0
else:
student_behind = getBehind(student_curr)
return numStudentsBehind(student_behind) + 1

7ﬁ?Lapameifesﬂecasdebase!

i} La partie récursive est I'appel de la fonction elle-méme! i}

6/26

Récursivité

m Cas de Base : C’est la condition sous laquelle la récursivité
s’arréte. Le cas de base empéche la fonction de s’appeler
indéfiniment, évitant ainsi une boucle infinie ou une erreur de
dépassement de pile. Il gére généralement le probleme le
plus simple, le plus petit a résoudre directement.

m Cas Récursif : C’est la partie de la fonction ou elle s’appelle
elle-méme avec un sous-ensemble du probleéme original ou
un pas de plus vers le cas de base. Le cas récursif réduit le
probleme global en instances plus petites, se rapprochant
progressivement du cas de base jusqu’a ce qu'’il soit atteint.

7126

Récursivité

m Cas de Base : C’est la condition sous laquelle la récursivité
s’arréte. Le cas de base empéche la fonction de s’appeler
indéfiniment, évitant ainsi une boucle infinie ou une erreur de
dépassement de pile. Il gére généralement le probleme le
plus simple, le plus petit a résoudre directement.

m Cas Récursif : C’est la partie de la fonction ou elle s’appelle
elle-méme avec un sous-ensemble du probleéme original ou
un pas de plus vers le cas de base. Le cas récursif réduit le
probleme global en instances plus petites, se rapprochant
progressivement du cas de base jusqu’a ce qu'’il soit atteint.

&Pour assurer qu’une fonction récursive se termine, il est crucial
que chaque appel récursif progresse vers I'atteinte du cas de base.

7126

Qu’est-ce qu'un nombre factoriel ?

Un nombre factoriel, noté avec un point d’exclamation (!),
représente le produit de tous les nombres entiers positifs jusqu’a
ce nombre. Le factoriel d’'un nombre n, noté n!, est donc défini

comme :

nN=nxnN—-1)x(N—-2)x...x3x2x1

8/26

Qu’est-ce qu'un nombre factoriel ?

Un nombre factoriel, noté avec un point d’exclamation (!),
représente le produit de tous les nombres entiers positifs jusqu’a
ce nombre. Le factoriel d’'un nombre n, noté n!, est donc défini

comme :

nN=nxnN—-1)x(N—-2)x...x3x2x1

Le factoriel de 5 est calculé comme suit :

Bl=5x4x3x2x1=120

8/26

Qu’est-ce qu'un nombre factoriel ?

Un nombre factoriel, noté avec un point d’exclamation (!),
représente le produit de tous les nombres entiers positifs jusqu’a
ce nombre. Le factoriel d’'un nombre n, noté n!, est donc défini

comme :

nN=nxnN—-1)x(N—-2)x...x3x2x1

Le factoriel de 5 est calculé comme suit :

Bl=5x4x3x2x1=120

Cas spéciaux
m Le factoriel de 0 (0!) est défini comme étant égal a 1.
m Les factoriels ne sont définis que pour les nombres entiers
non négatifs.

8/26

Calcul du Factoriel : Approche ltérative

Définition du Factoriel

Le factoriel d’'un nombre entier non négatif n, noté n!, est le produit
de tous les entiers positifs jusqu’a n. Mathématiquement, cela est
exprimé comme :

nN=nxnN—-1)x(N—-2)x...x3x2x1

< Créer une fonction factorial_iterative(n) quicalcule le
factoriel d’'un nombre entier n.

9/26

Calcul du Factoriel : Approche ltérative

Définition du Factoriel

Le factoriel d’'un nombre entier non négatif n, noté n!, est le produit
de tous les entiers positifs jusqu’a n. Mathématiquement, cela est
exprimé comme :

nN=nxnN—-1)x(N—-2)x...x3x2x1

< Créer une fonction factorial_iterative(n) quicalcule le
factoriel d’'un nombre entier n.

def factorial_iterative(n):

result =1
for i in range(2, n + 1):
result *= i

return result

9/26

Calcul du Factoriel avec la Récursivité

Définition du Factoriel

Le factoriel d’'un nombre entier non négatif n, noté n!, est le produit
de tous les entiers positifs jusqu’a n. Mathématiquement, cela est
exprimé comme :

nN=nxnN—-1)x(N—-2)x...x3x2x1

Cas de Base
Pour n = 0, le factoriel est défini comme 0! = 1.

Cas Récursif

Pour n > 0, le factoriel peut étre calculé comme n! = n x (n—1)!,
ou (n — 1)! est le factoriel de n — 1, calculé de maniére récursive.

10/26

Calcul du Factoriel avec la Récursivité

< Créer une fonction factorial_recursive(n) qui calcule le
factoriel d’'un nombre entier n.

11/26

Calcul du Factoriel avec la Récursivité

< Créer une fonction factorial_recursive(n) qui calcule le
factoriel d’'un nombre entier n.

def factorial(n):
Cas de base : si n est 1, retourner 1

if n ==
return 1

else:
Cas r cursif : n! =n * (n-1)!
return n * factorial(n - 1)

11/26

Calcul de la Puissance d'un Entier : Approche lterative

Définition de la Puissance d’'un Nombre

La puissance d’un nombre x élevé a n, notée x", est le produit de
x multiplié par lui-méme n fois. Pour n = 0, x® = 1 (si x # 0).

« Ecrire une fonction récursive power (x,n) qui prend un nombre
x et un exposant n et renvoie le résultat de x".

12/26

Calcul de la Puissance d’'un Entier : Approche Récursive

Définition de la Puissance d’'un Nombre

La puissance d’un nombre x élevé a n, notée x", est le produit de
x multiplié par lui-méme n fois. Pour n = 0, x® = 1 (si x # 0).

« Ecrire une fonction récursive power (x,n) qui prend un nombre
x et un exposant n et renvoie le résultat de x".

13/26

Calcul de la Puissance d’'un Entier : Approche Récursive

Définition de la Puissance d’'un Nombre

La puissance d’un nombre x élevé a n, notée x", est le produit de
x multiplié par lui-méme n fois. Pour n = 0, x® = 1 (si x # 0).

« Ecrire une fonction récursive power (x,n) qui prend un nombre
x et un exposant n et renvoie le résultat de x".

Cas de Base

Pour n = 0, x° = 1. C’est le cas de base qui arréte la récursivité.

13/26

Calcul de la Puissance d’'un Entier : Approche Récursive

Définition de la Puissance d’'un Nombre

La puissance d’un nombre x élevé a n, notée x", est le produit de
x multiplié par lui-méme n fois. Pour n = 0, x® = 1 (si x # 0).

« Ecrire une fonction récursive power (x,n) qui prend un nombre
x et un exposant n et renvoie le résultat de x".

Cas de Base

Pour n = 0, x° = 1. C’est le cas de base qui arréte la récursivité.

Cas Récursif

Pour n > 0, la puissance peut étre calculée comme x" = x x x"1,
ol x"~ " est calculé de maniére récursive.

13/26

Calcul de la Puissance d’'un Entier : Approche Récursive

def power(x, n):
if n == 0:
return 1
else:

return x * power(x, n - 1)

14/26

Calcul de la Puissance d’'un Entier : Approche Récursive

def power(x, n):
if n == 0:
return 1
else:

return x * power(x, n - 1)

Optimisation

Pour réduire le nombre d’appels récursifs, on peut utiliser la
méthode de "diviser pour régner" en traitant séparément les cas
ou n est pair ou impair.

14/26

Optimisation du Calcul Récursif de la Puissance

Méthode de "Diviser pour Régner"

Cette méthode réduit le nombre d’appels récursifs en traitant
différemment les cas ou I'exposant est pair ou impair. Elle permet
de calculer x" en utilisant moins d’opérations que I'approche
linéaire.

Cas Pair et Impair

m Si n est pair, alors x" = (x"/2)2.

m Si n est impair, alors x” = x x (x("=1)/2)2,

Cela permet de réduire de moitié le nombre d’opérations
nécessaires a chaque étape récursive.

15/26

Optimisation du Calcul Récursif de la Puissance

def power_optimized(x, n):

if n == 0:
return 1
elif n % 2 ==

return power_optimized(x,

else:

return x ~

or

power_optimized(x,

n // 2) ek 2

(-1 //2) *

2

16/26

Optimisation du Calcul Récursif de la Puissance

def power_optimized(x, n):

if n ==
return 1
elif n % 2 ==
return power_optimized(x, n // 2) ** 2
else:
return x * power_optimized(x, (n - 1) // 2) ** 2

Avantages

Cette optimisation réduit considérablement le temps d’exécution, surtout pour les
grands nombres, en diminuant le nombre total d’appels récursifs.

16/26

Qu’est-ce qu’un Palindrome ?

Definition

Un palindrome est un mot, une phrase, un nombre ou toute autre
séquence de caracteres qui se lit de la méme maniére de I'avant
vers l'arriere et de l'arriere vers I'avant, en ignorant les espaces, la
ponctuation et les majuscules.

A

Des exemples de palindromes incluent "radar", "kayak", et
"Madam, in Eden, I’'m Adam".

17/26

La Fonction isPalindrome

Signature de la Fonction

La fonction ‘isPalindrome* accepte une chaine de caracteres et
retourne vrai (‘true’) si la chaine se lit de la méme maniére dans
les deux sens.

Approche Récurisive

Pour vérifier si une chaine est un palindrome, nous comparons le
premier et le dernier caractére, puis appliquons la méme logique
récursivement sur la sous-chaine restante, en excluant les deux
caracteres.

¢ Créer une fonction récursive isPalindrome(s), avec
paramétre qui prend en parametre une chaine de caracteéres s.

18/26

Implémentation de isPalindrome

def isPalindrome_1(s):

base case

if (len(s) < 2):
return True

recursive case

elif (s[0] != s[len(s) - 1]):
return False

new_string = s[1l,len(s)-2]

return isPalindrome_1(new_string)

19/26

Implémentation de isPalindrome

def isPalindrome_2(s):
Base case:
empty string or single character string
if len(s) <= 1:
return True
s = s.lower()
Check if the first and last characters are the same
and recurse on the substring excluding these characters
return s[0] == s[-1] and isPalindrome_2(s[1:-1])

Explication

Cette fonction élimine les caractéres non alphanumériques et les différences de
casse avant de vérifier la propriété de palindrome, ce qui la rend robuste pour
des chaines complexes.

20/26

Les trois principes de la recirculation

Votre code doit comporter un cas pour toutes les entrées
valides.

Vous devez avoir un cas de base qui ne fait aucun appels
récursifs.

Lorsque vous faites un appel récursif, il doit s’agir d’'un appel a
une instance plus simple.

21/26

Les Tours de Hanoi : Introduction au Probléeme

Un puzzle mathématique ou I'objectif est de déplacer une pile de
disques de différentes tailles d’une tige a une autre, en suivant
trois regles simples :

Un seul disque peut étre déplacé a la fois.

Chaque déplacement consiste a prendre le disque supérieur
d’'une des piles et a le placer sur le dessus d’une autre pile.

Aucun disque ne peut étre placé sur un disque plus petit.

22/26

Les Tours de Hanoi

m Nous devons trouver un cas trés simple que nous pouvons
résoudre directement pour que la récursion fonctionne.

23/26

Les Tours de Hanoi

m Nous devons trouver un cas trés simple que nous pouvons
résoudre directement pour que la récursion fonctionne.

m Sila tour est de taille 1, nous pouvons simplement déplacer
ce disque unique de la source a la destination.

23/26

Les Tours de Hanoi

m Nous devons trouver un cas trés simple que nous pouvons
résoudre directement pour que la récursion fonctionne.

m Sila tour est de taille 1, nous pouvons simplement déplacer
ce disque unique de la source a la destination.

m Si la tour a plus d’'une taille, nous devons utiliser 'auxiliaire.

23/26

Référence du PDF Inclus

Source : web.stanford.edu,
Récupéré de : https://web.stanford.edu/class/archive/cs/cs106b/
cs106b.1178/lectures/7-IntroToRecursion/7-IntroToRecursion.pdf

24/26

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1178/lectures/7-IntroToRecursion/7-IntroToRecursion.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1178/lectures/7-IntroToRecursion/7-IntroToRecursion.pdf

Back to Towers of Hanoi

A B C

Back to Towers of Hanoi

A B C

Step One: Move the four smaller disks from Spindle A to Spindle B.

Back to Towers of Hanoi

A B C

Step One: Move the four smaller disks from Spindle A to Spindle B.
Step Two: Move the blue disk from Spindle A to Spindle C.

Back to Towers of Hanoi

A B C

Step One: Move the four smaller disks from Spindle A to Spindle B.
Step Two: Move the blue disk from Spindle A to Spindle C.
Step Three: Move the four smaller disks from Spindle B to Spindle C.

Back to Towers of Hanoi

A B C

i Step One: Move the four smaller disks from Spindle A to Spindle B.
Qg‘? &2 Qe}' Step Two: Move the blue disk from Spindle A to Spindle C.
@ Step Three: Move the four smaller disks from Spindle B to Spindle C.

Solution Récurisve

Approche Récurisve

La solution au probléme des Tours de Hanoi peut étre abordée
récursivement, en décomposant le probleme en sous-problemes
plus petits.

ldée Clé

Pour déplacer n disques de la tige A a la tige C en utilisant la tige
B comme auxiliaire :

Déplacez n — 1 disques de A vers B, en utilisant C comme
auxiliaire.

Déplacez le disque restant de A vers C.

Déplacez les n — 1 disques de B vers C, en utilisant A comme
auxiliaire.

V.

25/26

def ToH(n, A, B, C):

if n ==
print("Disk_1_.from", A,
return

ToH(n - 1, A, C, B)

print("Disk", n, "from", A,

ToH(n - 1, C, B, A)

TOH(S, "A", "B", "C")

"to",

"to",

Fonction Récurisve pour les Tours de Hanoi

B)

B)

26/26

	Récursivité

