
Initiation à l’algorithmique et programmation
2025-2026

Travaux Pratiques 2

Exercice 1. Imprimer des nombres

1. Ecrivez une fonction utilisant la récursivité pour imprimer des nombres compris entre n et 0.

2. Ecrivez une fonction utilisant la récursivité pour imprimer les nombres de 0 à n. (Il vous suffit de changer
une ligne dans le programme) du problème 1).

Exercice 2. Longueur d’une Chaîne
Créez une fonction récursive longueur_chaine qui retourne la longueur d’une chaîne de caractères sans

utiliser la fonction intégrée len().

Exercice 3. Inversion d’une Chaîne
Implémentez une fonction récursive inverse_chaine qui prend en entrée une chaîne de caractères et renvoie

la chaîne inversée.

Exercice 4. Parenthèses Équilibrées
Une chaîne de caractères contenant uniquement des parenthèses "(" et ")" est dite équilibrée si chaque pa-

renthèse ouvrante "(" a une parenthèse fermante correspondante ")" qui apparaît après elle, et si chaque paire
de parenthèses est correctement imbriquée et appariée.
Écrire une fonction récursive parentheses_equilibrees qui vérifie si les parenthèses dans une chaîne de carac-
tères sont équilibrées.

Exemples :
> > > parentheses_equilibrees("")
True
> > > parentheses_equilibrees("(())")
True
> > > parentheses_equilibrees("(()")
False
> > > parentheses_equilibrees("((()))")
True

Exercice 5. Sac à dos
Le problème du sac à dos consiste à essayer de remplir complètement un sac à dos ayant une capacité

maximale de S kg avec des objets de différents poids non-nuls donnés dans un ensemble E.
On représente l’ensemble E par une liste d’entiers distincts. Le but est d’écrire une fonction qui détermine s’il
existe une solution F ou non. Un algorithme possible est le suivant :

— Si S = 0 alors il existe une solution ;
— Sinon, pour chaque entier k dans E :

— s’il existe une solution pour S − k n’utilisant pas k, alors il existe une solution pour s ;
— sinon, on cherche une solution pour S n’utilisant pas l’entier k.

Questions :

1. Détailler le déroulement de l’algorithme ci-dessus pour S = 8 et E = {2, 4, 5, 8, 6, 1, 9}.
2. Écrire une fonction sac_a_dos_booleen(somme, entiers, index) qui renvoie True s’il existe une solu-

tion au problème pour le poids total somme en utilisant les éléments de entiers à partir de l’indice index,
et False sinon.



3. Écrire une fonction sac_a_dos_sol(somme, entiers, index) qui renvoie une solution au problème sous
la forme d’une liste d’entiers, ou None s’il n’en existe aucune.

4. Écrire une fonction sac_a_dos_liste_sol(somme, entiers, index) qui renvoie la liste de toutes les
solutions au problème.

Exercice 6. Monnayeur
Ce problème est une variante du précédent, dans laquelle il est possible d’utiliser plusieurs fois la même

valeur. On dispose de pièces de différentes valeurs en nombre illimité, et on veut rendre la monnaie pour une
somme entière S ≥ 0. La liste des valeurs de pièces disponibles sera fournie sous la forme d’une liste d’entiers
pieces (ce n’est pas forcément l’habituelle suite 1, 2, 5, 10, 20, 50, 100, . . .).
Exemples :
> > > monnayeur_nb(127,[1,10,97,100])
4

1. Écrire une fonction monnayeur_nb(somme, pieces, index) qui renvoie le nombre minimum de pièces
nécessaires pour atteindre somme en n’utilisant que des pièces de la liste pieces (donnée par ordre dé-
croissant, et contenant forcément 1) à partir de l’indice index, ou None s’il n’y a pas de solution.

2. Écrire une fonction monnayeur_sol(somme, pieces, index) qui renvoie une solution de longueur mi-
nimale sous la forme d’une liste de valeurs de pièces (qui contiendra en général des entiers répétés), ou
None s’il n’y a pas de solution.


