Initiation a ’algorithmique et programmation

2025-2026

Travaux Pratiques 2

Exercice 1. Imprimer des nombres

1. Ecrivez une fonction utilisant la récursivité pour imprimer des nombres compris entre n et 0.

2. Ecrivez une fonction utilisant la récursivité pour imprimer les nombres de 0 a n. (Il vous suffit de changer
une ligne dans le programme) du probléme 1).

Exercice 2. Longueur d’une Chaine
Créez une fonction récursive longueur_chaine qui retourne la longueur d’une chaine de caractéres sans
utiliser la fonction intégrée len().

Exercice 3. Inversion d’une Chaine
Implémentez une fonction récursive inverse_chaine qui prend en entrée une chaine de caractéres et renvoie
la chaine inversée.

Exercice 4. Parenthéses Equilibrées

Une chaine de caractéres contenant uniquement des parenthéses "(" et ")" est dite équilibrée si chaque pa-
renthése ouvrante "(" a une parenthése fermante correspondante ")" qui apparait aprés elle, et si chaque paire
de parenthéses est correctement imbriquée et appariée.
Ecrire une fonction récursive parentheses_equilibrees qui vérifie si les parenthéses dans une chaine de carac-
téres sont équilibrées.

Exemples :

> > > parentheses_equilibrees("")

True

> > > parentheses_equilibrees("(())")
True

> > > parentheses_equilibrees("(()")
False

> > > parentheses_equilibrees("((()))")
True

Exercice 5. Sac a dos
Le probléme du sac & dos consiste a essayer de remplir complétement un sac & dos ayant une capacité
maximale de S kg avec des objets de différents poids non-nuls donnés dans un ensemble E.
On représente ’ensemble E par une liste d’entiers distincts. Le but est d’écrire une fonction qui détermine s’il
existe une solution F ou non. Un algorithme possible est le suivant :
— Si S = 0 alors il existe une solution ;
— Sinon, pour chaque entier k dans F :
— ¢'il existe une solution pour S — k n’utilisant pas k, alors il existe une solution pour s;
— sinon, on cherche une solution pour S n’utilisant pas l'entier k.
Questions :

1. Détailler le déroulement de I’algorithme ci-dessus pour S =8 et £ = {2,4,5,8,6,1,9}.

2. Ecrire une fonction sac_a_dos_booleen(somme, entiers, index) qui renvoie True s’il existe une solu-
tion au probléme pour le poids total somme en utilisant les éléments de entiers & partir de 'indice index,
et False sinon.



3. KEcrire une fonction sac_a_dos_sol(somme, entiers, index) qui renvoie une solution au probléme sous
la forme d’une liste d’entiers, ou None s’il n’en existe aucune.

4. Ecrire une fonction sac_a_dos_liste_sol(somme, entiers, index) qui renvoie la liste de toutes les
solutions au probléme.

Exercice 6. Monnayeur

Ce probléme est une variante du précédent, dans laquelle il est possible d’utiliser plusieurs fois la méme
valeur. On dispose de piéces de différentes valeurs en nombre illimité, et on veut rendre la monnaie pour une
somme entiére S > 0. La liste des valeurs de piéces disponibles sera fournie sous la forme d’une liste d’entiers
pieces (ce n’est pas forcément 1'habituelle suite 1, 2, 5, 10, 20, 50, 100, . . .).
Exemples :
> > > monnayeur_nb(127,[1,10,97,100])
4

1. Ecrire une fonction monnayeur_nb(somme, pieces, index) qui renvoie le nombre minimum de piéces
nécessaires pour atteindre somme en n’utilisant que des piéces de la liste pieces (donnée par ordre dé-
croissant, et contenant forcément 1) & partir de I'indice index, ou None s’il n’y a pas de solution.

2. Ecrire une fonction monnayeur_sol (somme, pieces, index) qui renvoie une solution de longueur mi-
nimale sous la forme d’une liste de valeurs de piéces (qui contiendra en général des entiers répétés), ou
None s’il n’y a pas de solution.



